Keraflow
Deep Learning for Python.
 All Classes Namespaces Functions Pages
Class Hierarchy
This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 123]
oCBackend
|oCkeraflow.backend.tensorflow_backend.TensorflowBackend
|\Ckeraflow.backend.theano_backend.TheanoBackend
oCException
|\Ckeraflow.utils.exceptions.KeraFlowError
oCMultiInputLayer
|oCkeraflow.layers.core.ConcatenateConcatenate multiple input tensors
|oCkeraflow.layers.core.ElementWiseMultReduce multiple input tensors by conducting multiplication operation
|\Ckeraflow.layers.core.ElementWiseSumReduce multiple input tensors by conducting summation operation
oCobject
|oCkeraflow.backend.common.Backend
|oCkeraflow.callbacks.CallbackAbstract base class used to build new callbacks
||oCkeraflow.callbacks.EarlyStoppingStop training when a monitored quantity has stopped improving
||oCkeraflow.callbacks.LearningRateSchedulerLearning rate scheduler
||\Ckeraflow.callbacks.ModelCheckpointSave the model after every epoch
|oCkeraflow.constraints.MaxNormConstrain the weights along an axis pattern to have unit norm
|oCkeraflow.constraints.NonNegConstrain the weights to be non-negative
|oCkeraflow.constraints.UnitNormConstrain the weights along an axis pattern to have unit norm
|oCkeraflow.layers.base.KensorWrapper for a backend tensor
||\Ckeraflow.layers.base.InputThe entering point of each model
|oCkeraflow.layers.base.LayerBuilding block of a model
||oCkeraflow.layers.base.InputThe entering point of each model
||oCkeraflow.layers.base.MultiInputLayerBase class for layer accepting multiple inputs
||oCkeraflow.layers.base.SequentialLayerClass for making Sequential a Layer
||\Ckeraflow.layers.wrappers.TimeDistributedWrapper for apply a layer to every temporal slice of an input
|oCkeraflow.models.ModelA model is a directed Kensor graph
||\Ckeraflow.models.SequentialModel with single input and single output
|oCkeraflow.optimizers.OptimizerAbstract optimizer base class
||oCkeraflow.optimizers.AdadeltaAdadelta optimizer
||oCkeraflow.optimizers.AdagradAdagrad optimizer
||oCkeraflow.optimizers.AdamAdam optimizer
||oCkeraflow.optimizers.AdamaxAdamax optimizer from Adam paper's Section 7
||oCkeraflow.optimizers.RMSpropRMSProp optimizer
||\Ckeraflow.optimizers.SGDStochastic gradient descent, with support for momentum, learning rate decay, and Nesterov momentum
|oCkeraflow.regularizers.L1L1 weight regularization penalty, also known as LASSO
|oCkeraflow.regularizers.L1L2L1-L2 weight regularization penalty, also known as ElasticNet
|oCkeraflow.regularizers.L2L2 weight regularization penalty, also known as weight decay, or Ridge
|\Ckeraflow.utils.user_input_utils.UserInputUtility class for flexible user input assiging optimizers, regularizers, numpy input..
oCSequentialLayer
|\Ckeraflow.models.SequentialModel with single input and single output
\CLayer
 oCkeraflow.layers.convolution.Convolution3DNot implemented yet
 oCkeraflow.layers.convolution.ConvolutionBaseBase layer for convolution layers
 |oCkeraflow.layers.convolution.Convolution1DConvolution layer for convolving (sequence_length, input_dim) inputs
 |\Ckeraflow.layers.convolution.Convolution2DConvolution layer for convolving (input_depth, input_row, input_col) inputs
 oCkeraflow.layers.convolution.PoolingBaseBase layer for pooling layers
 |oCkeraflow.layers.convolution.Pooling1DPooling layer for sub-sampling (sequence_length, input_dim) inputs
 |oCkeraflow.layers.convolution.Pooling2DPooling layer for sub-sampling (input_depth, input_row, input_col) inputs
 |\Ckeraflow.layers.convolution.Pooling3DZero-padding layer for (input_depth, input_x, input_y, input_z) inputs
 oCkeraflow.layers.convolution.UnSamplingBaseBase layer for unsampling layers
 |oCkeraflow.layers.convolution.UnSampling1DRepeat each temporal step length times along the time axis
 |oCkeraflow.layers.convolution.UnSampling2DUnsampling layer for (input_depth, input_row, input_col) inputs
 |\Ckeraflow.layers.convolution.UnSampling3DUnsampling layer for (input_depth, input_x, input_y, input_z) inputs
 oCkeraflow.layers.convolution.ZeroPaddingBaseBase layer for zero padding layers
 |oCkeraflow.layers.convolution.ZeroPadding1DZero-padding layer for (sequence_length, input_dim) inputs
 |oCkeraflow.layers.convolution.ZeroPadding2DZero-padding layer for (input_depth, input_row, input_col) inputs
 |\Ckeraflow.layers.convolution.ZeroPadding3DZero-padding layer for (input_depth, input_x, input_y, input_z) inputs
 oCkeraflow.layers.core.ActivationApplies an activation function to an output
 oCkeraflow.layers.core.DenseFully connected layer
 oCkeraflow.layers.core.DropoutApplies Dropout to the input
 oCkeraflow.layers.core.ExpandDimsExpand dimension of the input tensor
 oCkeraflow.layers.core.FlattenFlatten the input tensor into 1D
 oCkeraflow.layers.core.HighwayDensely connected highway network
 oCkeraflow.layers.core.LambdaWrapper for implementating simple inline layer
 oCkeraflow.layers.core.PermuteDimsPermutes the dimensions of the input tensor according to a given pattern
 oCkeraflow.layers.core.RepeatRepeat the input tensor n times along given axis
 oCkeraflow.layers.core.ReshapeReshapes the input tensor according to a given pattern
 oCkeraflow.layers.embeddings.EmbeddingVocabulary (row) vectors looking up layer
 \Ckeraflow.layers.recurrent.RecurrentBase class for recurrent layers
  oCkeraflow.layers.recurrent.GRUGated Recurrent Unit - Cho et al
  oCkeraflow.layers.recurrent.LSTMLong-Short Term Memory unit - Hochreiter 1997
  \Ckeraflow.layers.recurrent.SimpleRNNFully-connected RNN where the output is to be fed back to input