|
Keraflow
Deep Learning for Python.
|
Convolution layer for convolving (input_depth, input_row, input_col) inputs. More...
Public Member Functions | |
| def | __init__ |
Public Member Functions inherited from keraflow.layers.convolution.ConvolutionBase | |
| def | __init__ |
Convolution layer for convolving (input_depth, input_row, input_col) inputs.
(nb_samples, input_depth, input_row, input_col)(nb_samples, nb_kernel, output_row, output_col)(input_depth, nb_kernel, input_row, input_col)(nb_kernel,)output_row and output_col are determined pad and strides. For details, please see ConvolutionBase. | def keraflow.layers.convolution.Convolution2D.__init__ | ( | self, | |
| nb_kernel, | |||
| kernel_row, | |||
| kernel_col, | |||
strides = (1, 1, |
|||
pad = 'valid', |
|||
bias = True, |
|||
init = 'glorot_uniform', |
|||
activation = 'linear', |
|||
| kwargs | |||
| ) |
| nb_kernel | int. Number of convolution kernels to use. |
| kernel_row | int. The height of the each kernel. |
| kernel_col | int. The width of the each kernel. |
| strides | 2D tuple of int. Steps for vertically/horizontally sliding each kernel for convolution. |
| pad | str, 'valid' of 'same'. See ConvolutionBase. |
| bias | boolean. Whether to include a bias (i.e. make the layer affine rather than linear). |
| init | str/function. Function to initialize trainable parameters. See Initializations. |
| activation | str/function. Activation function applied on the output. See Activations. |
| kwargs | see Layer.__init__. |