Keraflow
Deep Learning for Python.
|
Convolution layer for convolving (input_depth, input_row, input_col) inputs. More...
Public Member Functions | |
def | __init__ |
![]() | |
def | __init__ |
Convolution layer for convolving (input_depth, input_row, input_col) inputs.
(nb_samples, input_depth, input_row, input_col)
(nb_samples, nb_kernel, output_row, output_col)
(input_depth, nb_kernel, input_row, input_col)
(nb_kernel,)
output_row
and output_col
are determined pad
and strides
. For details, please see ConvolutionBase. def keraflow.layers.convolution.Convolution2D.__init__ | ( | self, | |
nb_kernel, | |||
kernel_row, | |||
kernel_col, | |||
strides = (1, 1 , |
|||
pad = 'valid' , |
|||
bias = True , |
|||
init = 'glorot_uniform' , |
|||
activation = 'linear' , |
|||
kwargs | |||
) |
nb_kernel | int. Number of convolution kernels to use. |
kernel_row | int. The height of the each kernel. |
kernel_col | int. The width of the each kernel. |
strides | 2D tuple of int. Steps for vertically/horizontally sliding each kernel for convolution. |
pad | str, 'valid' of 'same'. See ConvolutionBase. |
bias | boolean. Whether to include a bias (i.e. make the layer affine rather than linear). |
init | str/function. Function to initialize trainable parameters. See Initializations. |
activation | str/function. Activation function applied on the output. See Activations. |
kwargs | see Layer.__init__. |