Keraflow
Deep Learning for Python.
 All Classes Namespaces Functions Pages
keraflow.layers.convolution.Convolution2D Class Reference

Convolution layer for convolving (input_depth, input_row, input_col) inputs. More...

Inheritance diagram for keraflow.layers.convolution.Convolution2D:
keraflow.layers.convolution.ConvolutionBase

Public Member Functions

def __init__
 
- Public Member Functions inherited from keraflow.layers.convolution.ConvolutionBase
def __init__
 

Detailed Description

Convolution layer for convolving (input_depth, input_row, input_col) inputs.

  • input_shape: 4D, (nb_samples, input_depth, input_row, input_col)
  • output_shape: 4D, (nb_samples, nb_kernel, output_row, output_col)
  • parameters:
    • W: (input_depth, nb_kernel, input_row, input_col)
    • b: (nb_kernel,)
Note
output_row and output_col are determined pad and strides. For details, please see ConvolutionBase.

Constructor & Destructor Documentation

def keraflow.layers.convolution.Convolution2D.__init__ (   self,
  nb_kernel,
  kernel_row,
  kernel_col,
  strides = (1, 1,
  pad = 'valid',
  bias = True,
  init = 'glorot_uniform',
  activation = 'linear',
  kwargs 
)
Parameters
nb_kernelint. Number of convolution kernels to use.
kernel_rowint. The height of the each kernel.
kernel_colint. The width of the each kernel.
strides2D tuple of int. Steps for vertically/horizontally sliding each kernel for convolution.
padstr, 'valid' of 'same'. See ConvolutionBase.
biasboolean. Whether to include a bias (i.e. make the layer affine rather than linear).
initstr/function. Function to initialize trainable parameters. See Initializations.
activationstr/function. Activation function applied on the output. See Activations.
kwargssee Layer.__init__.