Keraflow
Deep Learning for Python.
 All Classes Namespaces Functions Pages
keraflow.backend.tensorflow_backend.TensorflowBackend Class Reference
Inheritance diagram for keraflow.backend.tensorflow_backend.TensorflowBackend:

Public Member Functions

def shape
 Returns the symbolic shape of a tensor.
 
def int_shape
 Returns the shape of a tensor as a tuple of integers or None entries. More...
 
def ndim
 Returns the number of axes in a tensor, as an integer.
 
def dtype
 Returns the dtype of a tensor, as a string.
 
def eval
 Evaluates the value of a tensor. More...
 
def cast
 Casts a tensor to a different dtype.
 
def set_value
 Sets the value of a tensor variable, from a Numpy array.
 
def switch
 Switches between two operations depending on a scalar value (int or bool). More...
 
def function
 Instantiates a Keraflow function. More...
 
def gradients
 Returns the gradients of variables (list of tensor variables) with regard to loss.
 
def zeros
 Instantiates an all-zeros tensor variable.
 
def ones
 Instantiates an all-ones tensor variable.
 
def eye
 Instantiate an identity matrix.
 
def zeros_like
 Instantiates an all-zeros tensor of the same shape as another tensor.
 
def ones_like
 Instantiates an all-ones tensor of the same shape as another tensor.
 
def dot
 numpy.dot on tensors
 
def gather
 Retrieves the vectors of indices indices in the 2D tensor reference. More...
 
def prod
 Multiplies the values in a tensor, alongside the specified axis.
 
def mean
 Mean of a tensor, alongside the specificied axis.
 
def std
 Standard deviation of a tensor, alongside the specificied axis.
 
def any
 Bitwise reduction (logical OR). More...
 
def argmax
 Returns the index of the maximum value along a tensor axis.
 
def argmin
 Returns the index of the minimum value along a tensor axis.
 
def square
 Element-wise square.
 
def abs
 Element-wise absolute value.
 
def sqrt
 Element-wise square root.
 
def exp
 Element-wise exponential.
 
def log
 Element-wise log.
 
def round
 Element-wise rounding to the closest integer.
 
def sign
 Element-wise sign.
 
def pow
 Element-wise exponentiation.
 
def clip
 Element-wise value clipping.
 
def equal
 Element-wise equality between two tensors. More...
 
def not_equal
 Element-wise inequality between two tensors. More...
 
def maximum
 Element-wise maximum of two tensors.
 
def minimum
 Element-wise minimum of two tensors.
 
def sin
 Computes sin of x element-wise.
 
def cos
 Computes cos of x element-wise.
 
def concatenate
 Concantes a list of tensors alongside the specified axis.
 
def reshape
 Reshapes a tensor to the specified shape.
 
def transpose
 Permutes axes in a tensor. More...
 
def repeat
 Repeats the elements of a tensor along an axis, like np.repeat. More...
 
def expand_dims
 Adds a 1-sized dimension at index "axis".
 
def squeeze
 Removes a 1-dimension from the tensor at index "axis".
 
def sigmoid
 Element-wise sigmoid.
 
def hard_sigmoid
 Segment-wise linear approximation of sigmoid. More...
 
def tanh
 Element-wise tanh.
 
def relu
 Rectified linear unit. More...
 
def softmax
 Softmax of a tensor.
 
def softplus
 Softplus of a tensor.
 
def dropout
 Sets entries in x to zero at random, while scaling the entire tensor. More...
 

Member Function Documentation

def keraflow.backend.tensorflow_backend.TensorflowBackend.any (   self,
  x,
  axis = None,
  keepdims = False 
)

Bitwise reduction (logical OR).

Returns an uint8 tensor (0s and 1s).

def keraflow.backend.tensorflow_backend.TensorflowBackend.dropout (   self,
  x,
  drop_rate,
  noise_shape = None 
)

Sets entries in x to zero at random, while scaling the entire tensor.

Parameters
xtensor
drop_ratefraction of the entries in the tensor that will be set to 0.
noise_shapeshape for randomly generated keep/drop flags, must be broadcastable to the shape of x
def keraflow.backend.tensorflow_backend.TensorflowBackend.equal (   self,
  x,
  y 
)

Element-wise equality between two tensors.

Returns a bool tensor.

def keraflow.backend.tensorflow_backend.TensorflowBackend.eval (   self,
  x 
)

Evaluates the value of a tensor.

Returns a Numpy array.

def keraflow.backend.tensorflow_backend.TensorflowBackend.function (   self,
  inputs,
  outputs,
  updates = [],
  kwargs 
)

Instantiates a Keraflow function.

Arguments

inputs: list of placeholder/variable tensors. outputs: list of output tensors. updates: list of update tuples (old_tensor, new_tensor).

def keraflow.backend.tensorflow_backend.TensorflowBackend.gather (   self,
  reference,
  indices 
)

Retrieves the vectors of indices indices in the 2D tensor reference.

Parameters
referencea 2D tensor.
indices2D int tensor or list.
Returns
3D tensor.
def keraflow.backend.tensorflow_backend.TensorflowBackend.hard_sigmoid (   self,
  x 
)

Segment-wise linear approximation of sigmoid.

Faster than sigmoid.

def keraflow.backend.tensorflow_backend.TensorflowBackend.int_shape (   self,
  x 
)

Returns the shape of a tensor as a tuple of integers or None entries.

Note that this function only works with TensorFlow.

def keraflow.backend.tensorflow_backend.TensorflowBackend.not_equal (   self,
  x,
  y 
)

Element-wise inequality between two tensors.

Returns a bool tensor.

def keraflow.backend.tensorflow_backend.TensorflowBackend.relu (   self,
  x,
  alpha = 0.,
  max_value = None 
)

Rectified linear unit.

Arguments

alpha: slope of negative section. max_value: saturation threshold.

def keraflow.backend.tensorflow_backend.TensorflowBackend.repeat (   self,
  x,
  rep,
  axis 
)

Repeats the elements of a tensor along an axis, like np.repeat.

If x has shape (s1, s2, s3) and axis=1, the output will have shape (s1, s2 * rep, s3)

def keraflow.backend.tensorflow_backend.TensorflowBackend.switch (   self,
  condition,
  then_expression,
  else_expression 
)

Switches between two operations depending on a scalar value (int or bool).

Note that both then_expression and else_expression should be symbolic tensors of the same shape.

Arguments

condition: scalar tensor. then_expression: TensorFlow operation. else_expression: TensorFlow operation.

def keraflow.backend.tensorflow_backend.TensorflowBackend.transpose (   self,
  x,
  dims 
)

Permutes axes in a tensor.

Arguments

dims: should be a tuple of dimension indices, e.g. (0, 2, 1).