Keraflow
Deep Learning for Python.
 All Classes Namespaces Functions Pages
keraflow.layers.recurrent.SimpleRNN Class Reference

Fully-connected RNN where the output is to be fed back to input. More...

Inheritance diagram for keraflow.layers.recurrent.SimpleRNN:
keraflow.layers.recurrent.Recurrent

Public Member Functions

def __init__
 
- Public Member Functions inherited from keraflow.layers.recurrent.Recurrent
def __init__
 

Detailed Description

Fully-connected RNN where the output is to be fed back to input.

  • input_shape: 3D, (nb_samples, sequence_length, input_dim)
  • output_shape (return_sequences=True): 3D, (nb_samples, sequence_length, output_dim)
  • output_shape (return_sequences=False): 2D, (nb_samples, output_dim)
  • parameters:
    • W: (input_dim, output_dim)
    • U: (output_dim, output_dim)
    • b: (output_dim,)

Constructor & Destructor Documentation

def keraflow.layers.recurrent.SimpleRNN.__init__ (   self,
  output_dim,
  init = 'glorot_uniform',
  inner_init = 'orthogonal',
  activation = 'tanh',
  dropout_W = 0.,
  dropout_U = 0.,
  return_sequences = False,
  go_backwards = False,
  stateful = False,
  unroll = False,
  kwargs 
)
Parameters
output_dimint. The output dimension of the layer.
initstr/function. Function to initialize W (input to hidden transformation). See Initializations.
inner_initstr/function. Function to initialize U (hidden to hidden transformation). See Initializations.
activationstr/function. Activation function applied on the output. See Activations.
dropout_Wfloat between 0 and 1. Fraction of the input units to drop for input gates.
dropout_Ufloat between 0 and 1. Fraction of the input units to drop for recurrent connections.
return_sequencesBoolean. See Recurrent.__init__
go_backwardsBoolean. See Recurrent.__init__
statefulBoolean. See Recurrent.__init__
unrollBoolean. See Recurrent.__init__
kwargssee Layer.__init__.