Keraflow
Deep Learning for Python.
 All Classes Namespaces Functions Pages
keraflow.layers.base.Input Class Reference

The entering point of each model. More...

Inheritance diagram for keraflow.layers.base.Input:
keraflow.layers.base.Layer keraflow.layers.base.Kensor

Public Member Functions

def __init__
 
- Public Member Functions inherited from keraflow.layers.base.Layer
def __init__
 
def set_trainable_params
 Register the layer's trainable parameters. More...
 
def input_dimension
 Return the expected dimension of input tensor. More...
 
def check_input_shape
 Check if the input shape(s) are valid. More...
 
def init_param
 Initializes trainable parameter(s) of the layer. More...
 
def output
 Calculates the output tensor of the layer given the input tensor(s). More...
 
def output_shape
 Calculates the shape of the output tensor given the shape of the input tensor(s). More...
 
def support_mask
 Whether the layer supports to carry on to the output tensor the mask embedded in input tensor. More...
 
def pack_init_param
 Check keraflow.utils.generic_utils.serialize.
 
def get_tensor_shape
 Get the shape of a tensor. More...
 
def get_weights
 Gets trainable parameter name, value (numpy arrays) pairs. More...
 
def embed
 Embeds the target layer such that its trainable parameters (along with regularizers and constraints on the parameters) are treated as the host layer's parameters and are updated during traing process. More...
 
def __call__
 Feed an input kensor or multiple input kensors to the layer and outputs another Kensor. More...
 
- Public Member Functions inherited from keraflow.layers.base.Kensor
def __init__
 

Additional Inherited Members

- Static Public Member Functions inherited from keraflow.layers.base.Layer
def unpack_init_param
 Check keraflow.utils.generic_utils.unserialize. More...
 

Detailed Description

The entering point of each model.

Constructor & Destructor Documentation

def keraflow.layers.base.Input.__init__ (   self,
  shape,
  dtype = B.floatx(),
  batch_size = None,
  mask_value = None,
  kwargs 
)
Parameters
shapetuple. The expected shape of the input data.
dtypestr/type. the expected data type of the input data.
batch_sizeint. The expected batch size. If None, accepts any number of batch. Should be same for all inputs of a model.
mask_valueint. The input value to be masked. If not None, a special mask tensor indicating which indices in the input should be skipped will be passed to the following layers (if the layers support masking). This is majorly used for recurrent layers, which may take variable length input.
kwargssee Layer.__init__