Keraflow
Deep Learning for Python.
|
The entering point of each model. More...
Public Member Functions | |
def | __init__ |
![]() | |
def | __init__ |
def | set_trainable_params |
Register the layer's trainable parameters. More... | |
def | input_dimension |
Return the expected dimension of input tensor. More... | |
def | check_input_shape |
Check if the input shape(s) are valid. More... | |
def | init_param |
Initializes trainable parameter(s) of the layer. More... | |
def | output |
Calculates the output tensor of the layer given the input tensor(s). More... | |
def | output_shape |
Calculates the shape of the output tensor given the shape of the input tensor(s). More... | |
def | support_mask |
Whether the layer supports to carry on to the output tensor the mask embedded in input tensor. More... | |
def | pack_init_param |
Check keraflow.utils.generic_utils.serialize. | |
def | get_tensor_shape |
Get the shape of a tensor. More... | |
def | get_weights |
Gets trainable parameter name, value (numpy arrays) pairs. More... | |
def | embed |
Embeds the target layer such that its trainable parameters (along with regularizers and constraints on the parameters) are treated as the host layer's parameters and are updated during traing process. More... | |
def | __call__ |
Feed an input kensor or multiple input kensors to the layer and outputs another Kensor. More... | |
![]() | |
def | __init__ |
Additional Inherited Members | |
![]() | |
def | unpack_init_param |
Check keraflow.utils.generic_utils.unserialize. More... | |
The entering point of each model.
def keraflow.layers.base.Input.__init__ | ( | self, | |
shape, | |||
dtype = B.floatx() , |
|||
batch_size = None , |
|||
mask_value = None , |
|||
kwargs | |||
) |
shape | tuple. The expected shape of the input data. |
dtype | str/type. the expected data type of the input data. |
batch_size | int. The expected batch size. If None, accepts any number of batch. Should be same for all inputs of a model. |
mask_value | int. The input value to be masked. If not None, a special mask tensor indicating which indices in the input should be skipped will be passed to the following layers (if the layers support masking). This is majorly used for recurrent layers, which may take variable length input. |
kwargs | see Layer.__init__ |