Keraflow
Deep Learning for Python.
|
Wrapper for apply a layer to every temporal slice of an input. More...
Public Member Functions | |
def | __init__ |
![]() | |
def | __init__ |
def | set_trainable_params |
Register the layer's trainable parameters. More... | |
def | input_dimension |
Return the expected dimension of input tensor. More... | |
def | check_input_shape |
Check if the input shape(s) are valid. More... | |
def | init_param |
Initializes trainable parameter(s) of the layer. More... | |
def | output |
Calculates the output tensor of the layer given the input tensor(s). More... | |
def | output_shape |
Calculates the shape of the output tensor given the shape of the input tensor(s). More... | |
def | support_mask |
Whether the layer supports to carry on to the output tensor the mask embedded in input tensor. More... | |
def | pack_init_param |
Check keraflow.utils.generic_utils.serialize. | |
def | get_tensor_shape |
Get the shape of a tensor. More... | |
def | get_weights |
Gets trainable parameter name, value (numpy arrays) pairs. More... | |
def | embed |
Embeds the target layer such that its trainable parameters (along with regularizers and constraints on the parameters) are treated as the host layer's parameters and are updated during traing process. More... | |
def | __call__ |
Feed an input kensor or multiple input kensors to the layer and outputs another Kensor. More... | |
Additional Inherited Members | |
![]() | |
def | unpack_init_param |
Check keraflow.utils.generic_utils.unserialize. More... | |
Wrapper for apply a layer to every temporal slice of an input.
The input should be at least 3D. The first dimension is the batch dimension, and the second dimension is considered to be the temporal dimension.
Example of applying a dens layer to the output of an Embedding layer:
def keraflow.layers.wrappers.TimeDistributed.__init__ | ( | self, | |
layer, | |||
kwargs | |||
) |
layer | The layer to be wrapped. |
kwargs | see Layer.__init__. |